CERTIFICATE OF ANALYSIS

SR1023 (CONCENTRATE) // PRODUCED: APR 18, 2022

CLIENT: CANNEUTICS, LLC // BATCH: PASS

MATRIX: CONCENTRATE
SAMPLE ID: NAL-220412-050
COLLECTED ON: APR 12, 2022
RECEIVED ON: APR 12, 2022
BATCH/SAMPLE SIZE: 700 G / 4.20 G
SAMPLED BY: KEVIN P MCALOON
RECEIVED BY: KAYLIN KEITH

CULTIVATOR INFO
CULTIVATOR
KEVIN MCALOON
\section*{LICENSE}
CGR26593
MEDICINAL - CAREGIVER

MANUFACTURER INFO

MANUFACTURER

KEVIN MCALOON
LICENSE
CGR26593
MEDICINAL - CAREGIVER

CANNABINOID OVERVIEW

Δ^{9}-THC:	59.3%
CBC:	3.61%
TOTALCANNABINOIDS:	64.2%

BATCH RESULT: PASS

POTENCY	TESTED
METALS	PASS
MYCOTOXINS	PASS
PESTICIDES	PASS
SOLVENTS	PASS
TERPENES	TESTED

CAN.1: POTENCY \& CANNABINOID PROFILE BY HPLC-UV PREPARATION: APR 13, 2022 // ANALYSIS: APR 13, 2022

ANALYTE	LIMIT	AMT	AMT	LOD/LOQ (\%)	PASS/FAIL
CBC	1.32%	$13.2 \mathrm{mg} / \mathrm{g}$	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBC	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBC	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBDA	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBDV	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBDVA	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBC	3.61%	$36.1 \mathrm{mg} / \mathrm{g}$	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBGA	$<$ LOQ	$<\mathrm{LOQ}$	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBC	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBLA	ND	ND	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	
CBS	$<$ LOQ	$<\mathrm{LOQ}$	$0.149 / 0.747$	$\mathrm{~N} / \mathrm{A}$	

RESULTS CERTIFIED BY:

GREG NEWLAND CSO, NOVA ANALYTIC LABS

$$
\text { APR 18, } 2022
$$

RESULTS CERTIFIED BY:
CHRIS ALTOMARE CEO, NOVA ANALYTIC LABS APR 18, 2022

TERPENES BY HEADSPACE GC-MS

PREPARATION: APR 13, 2022 // ANALYSIS: APR 15, 2022

ANALYTE	AMT	AMT	LOD/LOQ (mg/g)	PASS/FAIL
TOTALTERPENES	2.05%	$20.5 \mathrm{mg} / \mathrm{g}$		
B-CARYOPHYLLENE	1.25%	$12.5 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
a-HUMULENE	0.365%	$3.65 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
D-LIMONENE	0.0982%	$0.982 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
CARYOPHYLLENE OXIDE	0.0841	$\%$	$0.841 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$
a-BISABOLOL	0.0750%	$0.750 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
LINALOOL	0.0716	$\%$	$0.716 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$
TERPINOLENE	0.0599%	$0.599 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
B-MYRCENE	0.0481%	$0.481 \mathrm{mg} / \mathrm{g}$	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
EUCALYPTOL	ND	ND	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
P-CYMENE	ND	ND	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$
ISOPULEGOL	ND	ND	$0.0986 / 0.197$	$\mathrm{~N} / \mathrm{A}$

RSOL.1: RESIDUAL SOLVENTS, POISONS AND TOXINS BY HEADSPACE GC-MS
PREPARATION: APR 13, 2022 // ANALYSIS: APR 14, 2022

analyte	limit	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL	analyte	limit	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL
1,2-					HEXANE	$290 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.932 / 2.33$	PASS
DICHLOROETHANE	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.466 / 0.932$	PASS	ISOPROPYL ALCOHOL	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	18.6/37.3	PASS
ACETONE	$5000 \mu \mathrm{~g} / \mathrm{g}$	44.0	9.32/18.6	PASS	METHANOL	$3000 \mu \mathrm{~g} / \mathrm{g}$	< LOQ	9.32/46.6	PASS
ACETONITRILE	$410 \mu \mathrm{~g} / \mathrm{g}$	ND	9.32/18.6	PASS	methylene Chloride	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.466 / 0.932$	PASS
BENZENE	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.466 / 0.932$	PASS	PENTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	9.32/18.6	PASS
BUTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.932 / 2.33$	PASS	PROPANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	18.6/37.3	PASS
CHLOROFORM	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.466 / 0.932$	PASS	toluene	$890 \mu \mathrm{~g} / \mathrm{g}$	ND	4.66/9.32	PASS
ETHANOL	$5000 \mu \mathrm{~g} / \mathrm{g}$	434	9.32/18.6	PASS	TRICHLOROETHY-	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	0.466/0.932	PASS
Ethyl ACETATE	$5000 \mu \mathrm{~g} / \mathrm{g}$	46.0	9.32/18.6	PASS	Lene	$\mu \mathrm{g} / \mathrm{g}$		$0.466 / 0.932$	
ETHYLENE OXIDE	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	0.466/0.932	PASS	O-XYLENE	2170 mg/g	ND	$0.932 / 4.66$	PASS
ETHYLETHER	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	9.32/18.6	PASS	P-AND M-XYLENE	2170 Hg/g	ND	1.86/4.66	PASS
HEPTANE	$5000 \mu \mathrm{~g} / \mathrm{g}$	ND	$9.32 / 18.6$	PASS	TOTAL XYLENES	2170 /g/g	ND		PASS

PST.2: PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY LC-HRMS
PREPARATION: APR 15, 2022 // ANALYSIS: APR 15, 2022

analyte		LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	analyte	limit	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ABAMECTIN	500	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	IMIDACLOPRID	$400 \mu \mathrm{~g} / \mathrm{kg}$	191	144/144	PASS
ACEPHATE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	KRESOXIM-	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
ACEQUINOCYL	2000	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	METHYL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	$144 / 144$	PASS
ACETAMIPRID	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	MALATHION	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
ALDICARB	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	METALAXYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
AZOXYSTROBIN	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	METHIOCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
BIFENAZATE	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	METHOMYL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
BIFENTHRIN	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	M GK-264	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND		PASS
BOSCALID	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	MGK-264 I		ND	144/144	N/A
CARBARYL	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	MGK-264 II		ND	144/144	N/A
CARBOFURAN	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	MYCLOBUTANIL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
CHLORANTRANIL-		$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	NALED	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
IPROLE						OXAMYL	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
CHLORFENAPYR	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/192	PASS	PACLOBUTRAZOL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
CHLORPYRIFOS	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PARATHION-	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
CLOFENTEZINE	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	METHYL	$200 \mu \mathrm{~g} / \mathrm{kg}$		$144 / 14$	
CYFLUTHRIN	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	480/960	PASS	PERMETHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND		PASS
CYPERMETHRIN	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	480/960	PASS	PERMETHRIN CIS		ND	144/144	N/A
DAMINOZIDE	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	480/960	PASS	PHOSMET	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
DIAZINON	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PIPERONYLBUTO-	2000 gg/kg	ND	144/144	PASS
DICHLORVOS	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	XIDE	$2000 \mu \mathrm{k} / \mathrm{kg}$		144/14	
DIMETHOATE	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PRALLETHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
ETHOPROPHOS	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PROPICONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	192/192	PASS
ETOFENPROX	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PROPOXUR	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
ETOXAZOLE	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	PYRIDABEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
FENOXYCARB	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	SPINOSAD	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
FENPYROXIMATE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	SPIROMESIFEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
FIPRONIL	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	SPIROTETRAMAT	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
FLONICAMID	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	SPIROXAMINE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
FLUDIOXONIL	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	TEBUCONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
HEXYTHIAZOX	1000	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	THIACLOPRID	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
IMAZALIL	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	144/144	PASS	THIAMETHOXAM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
						TRIFLOXYSTROBIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	144/144	PASS
MYC. 1: MYCOTOXINS BY LC-HRMS PREPARATION: APR 15, 2022 // ANALYSIS: APR 15, 2022										
analyte	LImit	AMT ($\mu \mathrm{g} / \mathrm{kg}$)		LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	analyte	Limit	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
AFLATOXIN B1			ND	0.203/0.608	N/A	AFLATOXIN G2		ND	$0.203 / 1.01$	N/A
AFLATOXIN B2			ND	0.608/1.01	N/A	OCHRATOXIN A		ND	0.405/1.22	N/A

HME.1: HEAVY METALS BY ICP-MS
PREPARATION: APR 13, 2022 // ANALYSIS: APR 14, 2022

ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ARSENIC	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	19.5/48.8	PASS	LEAD	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	19.5/58.5	PASS
CADMIUM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	19.5/48.8	PASS	MERCURY	$100 \mu \mathrm{~g} / \mathrm{kg}$	ND	19.5/39.0	PASS

* FOR QuAlity assurance purposes. not a maine compliance certificate.

